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A novel approach to diffraction analysis of decorated quasicrystals is discussed.

An average unit cell has been constructed for a decorated Fibonacci chain and

used for analysis of its diffraction pattern. After some transformation of the

scattering vectors, all the diffraction peaks are described by a single envelope

function which is characteristic of a given decoration. It has been shown that by

knowing several diffraction intensities, in a limited range of the scattering

vector, it is possible to reconstruct the envelope function successfully and

distinguish between different decorated structures.

1. Introduction

The question `where are the atoms?' for most quasicrystals is

still unanswered. A very powerful method of solving the

structures of quasicrystals, based on hyperspace crystal-

lography, was formulated several years ago (Bak, 1985;

Janssen, 1986; Gratias et al., 1988a,b; Janot, de Boissieu et al.,

1989; Janot, Pannetier et al., 1989; de Boissieu et al., 1991;

Cervellino et al., 1998). Using such an approach, it was possible

to solve, at least partially, many icosahedral (de Boissieu et al.,

1991; van Smaalen et al., 1991; Yamamoto, 1992; Cornier-

Quiquandon et al., 1991; Boudard et al., 1992) and decagonal

(Steurer, 1990; Steurer & Kuo, 1990; Yamamoto et al., 1990)

phases. Several powerful structure-solution techniques as well

as re®nement programs have also been developed (Elcoro et

al., 1994; Fu et al., 1993; Haibach & Steurer, 1996; Dubois &

Janot, 1987). However, as has been pointed out by Lancon et

al. (1994), misindexing the diffraction pattern, i.e. choosing a

wrong unit cell, leads to badly partitioned atomic surfaces and

a severely averaged structure in real space. Recently, Cervel-

lino et al. (1998) have derived a method based on the physical-

space Patterson function, which allows the determination of

the correct n-D Bravais lattice of quasicrystals. As a result, the

optimum unit cell can be chosen and a proper indexing scheme

can be applied for the diffraction pattern.

In this paper, another approach to diffraction analysis of

quasicrystals is used. The main idea of this approach is based

on the concept of a reference lattice (Wolny, 1992, 1998a,b),

which is a mathematically de®ned one-dimensional set of

equidistant planes, perpendicular to the scattering vector k0,

with periodicity related to the scattering vector as 2�=k0.

Using such a reference lattice, one can calculate a probability

distribution of atomic displacements from the nearest point of

the reference lattice. Then, the Fourier transform of such a

probability distribution gives values of form factors for a

periodic set of scattering vectors given by k � mk0, where m is

an integer. Such a Fourier transform also de®nes a smooth

function, called the envelope function, connecting intensity

maxima for periodic series of diffraction peaks.

All the calculations of the diffraction pattern are performed

in the physical space and the envelope function can be

obtained directly from the diffraction pattern. To get the

envelope function from the experimental data, no Fourier

transform of the diffraction pattern is required, which is very

important in connection with the well known phase problem in

crystallography. Knowledge of the envelope function gives

several advantages. First, it reduces the in¯uence of experi-

mental errors on the ®nal result of a structure re®nement. It

also allows correction of the intensities of some `badly

measured diffraction peaks'. Finally, intensities of some

unmeasured diffraction peaks can be easily completed ± the

envelope function is a smooth function of the scattering vector

so the intensities of different re¯ections can be reliably

predicted. For quasicrystals, for example, the envelope func-

tion can be well determined for many different re¯ections

observed in their diffraction pattern, especially when reduced

scattering vectors are used (for the de®nition of reduced

scattering vector, see the text). Finally, by this procedure, one

can almost uniquely de®ne other unknown intensities lying in

the neighbourhood of reduced scattering vectors for some

measured re¯ections. On the other hand, the envelope func-

tions look different for different decorations and such a

property allows one to distinguish easily between different

models.

2. Decorated chain

A simple 1D quasiperiodic structure derived by decorating a

Fibonacci chain (Lancon et al., 1994; Cervellino et al., 1998)

has been used to test the presented approach to diffraction

analysis. The decorated tiling is obtained by applying once the

substitution rules Lÿ!LLSL and Sÿ!SLS on the Fibonacci

chain. The lengths of the two bounds have been chosen as
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follows: L � � � 1:618 and S � L=� � 1, where � is the

golden mean. To calculate the diffraction pattern, it was

assumed that the same ®ctitious atoms are placed at the ends

of each bond, which leads to the mean average distance

between atoms equal to a � 1� 1=�2 � 1:382, the same as for

an undecorated Fibonacci chain. The calculated diffraction

pattern, i.e. the normalized square of the absolute value of the

structure factor (Fig. 1), is comparable with the one obtained

from a nondecorated Fibonacci chain. The positions of the

main Bragg peaks are the same; however, the scattering

intensity distribution is different.

It is well known that the Fibbonacci chain can be regarded

as a modulated structure and the same holds for the decorated

chain. Using two reference lattices (Wolny, 1998a,b), the ®rst

one having periodicity a and the second one periodicity

b � �a, the structure factor for arbitrary integer combination

of the two scattering vectors k0 � 2�=a, q0 � 2�=b � k0=� can

be expressed by

F�nk0 �mq0� �
Ra=2

ÿa=2

Rb=2

ÿb=2

P�u; v�

� exp�i�nk0u�mq0v�� du dv; �1�
where u and v are the shortest distances of the atomic posi-

tions from the appropriate points of the two reference lattices

and P�u; v� is the corresponding probability distribution,

which is the equivalent of an average unit cell. To calculate the

whole diffraction pattern, one has to know the probability

distribution in an average unit cell which is bounded by

�ÿa=2; a=2� for u and �ÿb=2; b=2� for v. As has already been

shown (Wolny, 1998b), such a probability distribution is

nonzero only along the line given by

v � ÿ�2u �2�
(see also Fig. 2a). For the Fibonacci chain, the shape of the

probability distribution is rectangular (Fig. 3), which leads to

the following expression for the intensity of the diffraction

peaks (i.e. main re¯ections and their satellites):

I=N2 � �sin�w�=w�2; �3�
where

w � �nk0 ÿ �2mq0�=2� � k0�nÿm��=2� �4�
and n and m are indices of the main re¯ection and its satellites,

respectively. Knowing the peak positions in the diffraction

pattern, which are given by

k � nk0 �mq0 � k0�n�m=��; �5�
one can write (4) in the form

w � �kÿ �1� �2�mq0�=2�: �6�
Expression (6), together with (3), has been used to calculate

all the envelope functions shown in Fig. 1(a). The envelope

functions connect peak maxima of the main re¯ections, i.e. for

m � 0 (full line) and their satellites (up to third order, i.e. for

m � 1; 2; 3) (broken lines).

For the considered decorated structures, the probability

distribution is nonzero along the same line as before (Fig. 2b),

given by equation (2). However, the distribution changes from

the rectangular shape for a Fibonacci chain to a step-like

function for the decorated structure (Fig. 3). One can easily

recognize the similarity of such a shape to the shape of the

window function in perp-space (see also Fig. 6 of Lancon et al.,

1994). The main difference is, however, that the probability

distribution is calculated only in real space, and no higher-

dimensional analysis is required. For the probability distri-

bution of a decorated structure (Fig. 3), the six different levels

of probability are obtained and they are de®ned as follows:

P�u� � 0 for u 6� �u1; u10�
P�u� � �=5 for u � �u1; u2� or u � �u9; u10�
P�u� � 2�=5 for u � �u2; u3� or u � �u8; u9�
P�u� � 3�=5 for u � �u3; u4� or u � �u7; u8�
P�u� � 4�=5 for u � �u4; u5� or u � �u6; u7�
P�u� � � for u � �u5; u6�;

�7�

where

Figure 1
Diffraction pattern obtained for (a) the Fibonacci chain and (b) the
decorated Fibonacci chain. The decorated structure is obtained by
applying the substitution rules Lÿ!LLSL and Sÿ!SLS to the Fibonacci
chain. All the diffraction-peak maxima are connected by the envelope
functions calculated by Fourier transform of an appropriate probability
distribution shown in Figs. 2 and 3. The solid line represents the envelope
function for main re¯ections and the broken lines are for the ®rst-,
second- and third-order satellites, respectively.



u1 � 7ÿ 4�; u2 � � ÿ 1; u3 � 12ÿ 7�;
u4 � 4ÿ 2�; u5 � 9ÿ 5�; u6 � 6ÿ 3�;
u7 � 2� ÿ 2; u8 � 11ÿ 6�; u9 � 3ÿ �;

u10 � 8ÿ 4�:

�8�

Fourier transform of the above distribution leads to the

following expression for the envelope function connecting

peak maxima of mth satellites:

I�k�mq1�=N2 � ��2=25 k2�

�
 �P5

i�1

�cos�kui�5� ÿ cos�kui��
�2

�
�P5

i�1

�sin�kui�5� ÿ sin�kui��
�2
!
; �9�

where

q1�1� �2�q0 � 2�� � 10:17: �10�
The envelope functions for a decorated structure are shown in

Fig. 1(b). One can easily check that the obtained envelope

functions properly describe intensities of all Bragg peaks (for

modulated structures, this should be understood as all the

main re¯ections and their satellites) at positions given by (5).

3. How to distinguish between decorated structures

From the experimental point of view, one of the most impor-

tant questions is the following: can the two structures (dec-

orated and undecorated) be distinguished from each other by

diffraction analysis? The answer is easy only for perfect

structures with perfectly measured diffraction patterns. In

reality, however, the structure is neither ideal (because of

defects, static as well as dynamic) nor are the measurements

free of experimental errors. Usual experimental conditions

lead to diffraction patterns consisting of only a few well

developed peaks in each direction. From these peaks, one has

to judge the decoration, which, at least for quasicrystals, is a

nontrivial task. The present approach to the diffraction

pattern gives a very useful tool ± the envelope function. After

appropriate processing of the measured intensities, one can

plot the peak intensities versus the reduced scattering vector,

which is just the normal scattering vector modulo q1. For such

a plot (Fig. 4), all the experimental data should lie on a single

curve describing an appropriate envelope function, which is,

of course different for different decorations. Knowing the

envelope function, one can easily test some models with

different decorations and ®nd the one that ®ts best to the

experimental data. As the envelope function is a smooth

function of the scattering vector, it can be determined much

more accurately than the individual peaks. In many cases, the

accuracy of the envelope function should be suf®cient to

distinguish between different decorations.

4. Concluding remarks

The diffraction pattern of a quasicrystalline structure can be

effectively calculated in physical space using the concept of an

average unit cell. In such a unit cell, the atoms are replaced by
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Figure 3
Probability distributions of atomic distances from the points of a
reference lattice corresponding to a scattering vector equal to k0 � 2�=a.
The dotted line is for a Fibonacci chain, the solid line (the step-like
function) is for a decorated Fibonacci chain. Dashed vertical lines
describe the average unit-cell boundaries.

Figure 2
The average unit cell for (a) the Fibonacci chain and (b) the decorated
Fibonacci chain. The probability distributions of atomic displacements
are zero almost everywhere except the line where v � ÿ�2u. Owing to the
boundary conditions, the distributions are shifted as indicated by the
arrows.
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the probability distributions of atoms around the points of the

reference lattice. Fourier transform of such a unit cell gives

a set of envelope functions connecting peak maxima of

the diffraction pattern. For a Fibonacci chain, the obtained

probability distribution has a rectangular shape which leads

to a simple expression for the envelope function of the main

re¯ections and their satellites. For a decorated structure, the

shapes of the probability distributions are more complex.

In the case of the decoration discussed in this paper

(Lÿ!LLSL and Sÿ!SLS), a step-like function for the

probability distribution was determined. Knowing this func-

tion, we have obtained and tested an analytical expression for

the peak intensities. The obtained envelope function properly

describes intensities of all main re¯ections and their satellites.

It is also worth mentioning that the presented approach is not

limited to structures for which a higher-dimensional repre-

sentation is available (quasicrystals and modulated struc-

tures). More general structures like a Thue±Morse sequence

with a singular-continuous diffraction pattern can be

successfully analysed (Wolney, 1998c). Other random struc-

tures, like faulted lattices of ZnS (Farkas-Jahnke, 1998) can

also be analysed with this approach, which will be published

elsewhere.

Using the concept of the envelope function, a new method

of elaboration of the experimental data has been suggested.

All the measured intensities plotted versus reduced scattering

vector lie on a single curve (i.e. along the envelope function),

which can be effectively used to distinguish between different

decorated structures. Such an envelope function is determined

directly from the experimental data and no Fourier analysis is

required to obtain the curve.
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Figure 4
Peak intensities versus reduced scattering vector for a decorated
Fibonacci chain (open circles). All the intensities lie on the envelope
function (solid line). The respective envelope function for a Fibonacci
chain is also marked as a dotted line.


